Urocortin 2, EIA - Cosmo Bio Co.,Ltd.

Antibodies

>

Urocortin 2, EIA

Catalog No.: YII-YK190-EX
Size: 1KIT
Price: ¥76000
$1014
antigen/source: Urocortin 2
Application: Enzyme Immunoassay
catalog info: Catalog 2012-p113
Storage: 4C
@
Immunogen: Mouse
Reacts with: Mouse
Measurement Range: 0.82 - 200 ng/mL
Purpose: This EIA kit is used for quantitative determination of urocortin 2 in mouse plasma & serum samples. The kit is characterized by its sensitive quantification and high specificity. In addition, it has no influence by other components in samples. Mouse urocortin 2 standard is highly purified synthetic product.
component: Antibody: X
Plate: X
Coating: X
Control: -
Standard: X
Labeling: X
Substrate: X
Others: X
1. Antibody coated plate 1 plate (96 wells)
2. Standard 1 vial
3. Labeled antigen 1 vial
4. SA-HRP solution 1 bottle (12 mL )
5. Substrate buffer 1 bottle (24 mL )
6. OPD tablet 2 tablets
7. Stopping solution 1 bottle (12 mL )
8. Buffer solution 1 bottle (15 mL )
9. Washing solution 1 bottle (50 mL )
10. Adhesive foil 3 sheets

Other:

 Supplementary 
Competitive
 Applicable sample 
Serum, Plasma
[Other]
Urocortin 2 (Ucn 2), also known as stresscopin-related peptide, is a novel predicted neuropeptide related to corticotropin-releasing factor (CRF). The peptide consisting of 38 amino acid residues was first demonstrated to be expressed centrally and to bind selectively to type 2 CRF receptor (CRFR2). In the rodent, Ucn 2 transcripts were shown to be expressed in the discrete regions of the central nervous system includingstress-related cell groups in the hypothalamus and brainstem. More recently, the expression of Ucn 2 transcripts was detected in the olfactory bulb, pituitary, cortex, hypothalamus, and spinal cord. Ucn 2 mRNA was also found to be expressed widely ina variety of peripheral tissues, most highly in the skin and skeletal muscle tissues. Ucn 2-like immunoreactivity was detected by RIA in acid extracts of mouse brain, muscle, and skin. Immunohistochemically Ucn 2 was found in both skin epidermis andadnexal structures and in the skeletal muscle myocytes. Ucn 2 gene transcription was stimulated in the hypothalamus and brainstem by glucocorticoid administration to the mouse and inhibited by removal of glucocorticoids by adrenalectomy, suggestingaputative link between the CRFR1 and CRFR2 pathways. On the other hand, in the rat a stressor-specific regulation of Ucn 2 mRNA expression in the hypothalamic paraventricular nucleus was demonstrated, which raised the possibility of a modulary roleofUcn 2 mRNA in stress-induced alteration of anterior and posterior pituitary function, depending on the type of stress. Administration of dexamethasone to the mouse resulted in a decrease of Ucn 2 mRNA levels in the back skin region. Adrenalectomysignifcantly increased Ucn 2 mRNA levels in the skin, and the levels were reduced back to normal levels after corticoid replacement.
UcnCRFR2 is found in cardiomyocytes and in endothelial and smooth muscle cells of the systemic vasculature. Ucn 2 is expressed in the mouse cardiomyocytes. In the mouse, Ucn 2 treatment augmented heart rate, exhibited potent inotropic and lusitropic actions on the left ventricle, and induced a downward shift of the diastolic pressure-volume relation. Ucn 2 also reduced systemic arterial pressure, associated with a lowering of systemic arterial elastance and systemic vascular resistance. The effects of Ucn 2 were specific to CRFR2 function and independent of beta-adrenergic receptors. These experiments demonstrated the potent cardiovascular physiologic actions of Ucn 2 in the both wild-type and cardiomyopathic mice and support a potential beneficial use of Ucn 2 in congestive heart failure treatment. The use of Ucn 2 was also proposed to treat ischemic heartdisease because of its potent cardioprotective effect in the mouse heart and its minimal impact on the hypothalamic stress axis.
Administration of Ucn 2 to the mouse prevented the loss of skeletal muscle mass resulting from disuse due to casting, corticosteroid treatment, and nerve damage. In addition, Ucn 2 treatment prevented the loss of skeletal muscle force and myocyte cross-sectional area that accompanied muscle mass losses resulting from disuse due to casting. In normal musclesof themouse, Ucn 2 increased skeletal muscle mass and force. It was thus proposed that Ucn 2 might find utility in the treatment of skeletal muscle wasting diseases including age-related muscle loss or sarcopenia.
Mouse urocortin 2 (Ucn 2) is a newpeptide predicted from mouse cDNA sequence and its physiologic and pathophysiologic significance has not yet been fully elucidated. However, the experimental data presented to date provided evidence for the important physiologic roles of Ucn 2 and urge thenecessity of further investigation of the peptide from various points of view.
We succeeded this time in the development of mouse urocortin 2 EIA kit which is highly specific for 3 mouse Ucn 2 with almost no crossreaction to Ucn 1 (mouse, rat), Ucn3 (mouse), ACTH (mouse, rat) and CRF (mouse, rat, human). The kit can be used for measurement of Ucn 2 in mouse plasma or serum with high sensitivity. It will be a specifically useful tool for Ucn 2 research.


Reference:

•  Reyes TM. (2001) Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA. 98, 2843-2848
•  Chen A. (2003) Glucocorticoids regulate the expression of the mouse urocortin II gene: a putative connection between the corticotropin-releasing factor receptor pathways. Mol Endocrinol.,17, 1622-1639
•  Chen A. (2004) Urocortin II gene is highly expressed in mouse skin and skeletal muscle tissues: localization, basal expression in corticotropin-releasing factor receptor (CRFR) 1-and CRFR2-null mice, and regulation by glucocorticoids. Endocrinology., 145, 2445-2457
•  Tanaka Y. (2003) Effect of stress and adrenalectomy on urocortin II mRNA expression in the hypothalamic paraventricular nucleus of the rat. Neuroendocrinology., 78, 1-11
•  Bale TL. (2004) The cardiovascular physiologic actions of urocortin II: acute effects in murine heart failure. Proc Natl acad Sci U S A., 101, 3697-3702
•  Brar BK. (2004) Urocortin II and urocortin III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology., 145,24-35
•  Hinkle RT. (2003) Urocortin II treatment reduces skeletal muscle mass and function loss during atrophy and increases nonatrophying skeletal muscle mass and function. Endocrinology., 144, 4939-4946
 
>