iPS in Science Breakthrough of Stem Cell Research

人工多能: サイエンス誌に載っ **生**た

2007年11月20日、IPS 細胞に関する画期的な科学論文 2 編か 同時に発表されました。Science Express 誌に発表された米国ウィ スコンシン大学マディソン校の James Thomson 先生らの報告と、 同日 Cell 誌に発表された京都大学再生医学研究所の山中伸弥先生ら の報告です。山中先生らは更に、2008年2月14日発行の Science Express に iPS 細胞に関連する新たな知見を発表されま した。ここに、Science に掲載された2つの論文を邦訳してお届け いたします。この機会に、多くの研究者の方々に、生命科学と医療の 現場に革新をもたらす知見として広く世界に認められた業績に触れて いただきたいと考えます。

監修:京都大学再生医科学研究所 再生誘導研究分野 青井 貴之先生

人と科学のステキな未来へ **コスモ・バイオ株式会社**

成体マウス肝および胃細胞からの多能性幹細胞樹<u>立</u>

Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells

Takashi Aoi,^{1,2} Kojiro Yae,¹ Masato Nakagawa,¹ Tomoko Ichisaka,^{1,3} Keisuke Okita,¹ Kazutoshi Takahashi,¹ Tsutomu Chiba,² Shinya Yamanaka^{1,3,4,5*}

1 Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University,

- 3 CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan.
- 4 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158

5 Center for iPS Cell Research and Application, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan

* To whom correspondence should be addressed. E-mail: yamanaka@frontier.kyoto-u.ac.jp

4 種類の転写因子をレトロウイルスベクターで導入することにより、 マウスおよびヒトの線維芽細胞から誘導多能性幹細胞(人工多能性幹 細胞、iPS 細胞)がこれまでに樹立された。しかし、iPS 細胞の起源 や誘導の分子機序は、まだ明らかになっていない。今回われわれは、 成体マウスの肝細胞および胃上皮細胞から iPS 細胞を樹立したので 報告する。樹立したこれらの iPS 細胞のクローンは、遺伝子発現が ES 細胞と同等であると考えられる。また、生殖系列キメラを形成す る能力がある。遺伝学的手法を用いた細胞系列の追跡解析により、肝 臓由来の iPS 細胞はアルブミン発現細胞に由来することが判明した。 複数のクローン間で、共通したレトロウイルスの挿入部位は見いださ れなかった。これらの知見から、iPS 細胞は分化系列が決定している 体細胞に対する直接的な初期化によって誘導され、特定の部位へのレ トロウイルスの挿入は必要でないことが示唆される。 4 種類の転写因子、Oct3/4、Sox2、Klf4、および c-Myc を レトロウイルスによって導入することで、成体マウスの線維芽 細胞は初期化され、胚性幹細胞(ES 細胞)と同様の未分化な状態を 獲得する(1,2)。このような細胞は人工多能性幹細胞(iPS 細胞) と命名された。その後、ヒトの iPS 細胞も、2 通りの異なる組み合 わせの転写因子を用いて樹立された(3,4)。ヒト iPS 細胞の樹立が 可能になったことにより、患者特異的な幹細胞を作出し、培養下で病 態を研究する道が拓かれた(3-5)。しかし、iPS 細胞の誘導に関わ る機序はまだ明らかになっていない。iPS 細胞の誘導効率の低さは、 その起源が線維芽細胞培養に混在している未分化な幹細胞であること によるのかもしれない。さらに、特定の部位にレトロウイルスが組込 まれることが、iPS 細胞の誘導に必要である可能性もある(6)。

今回われわれは、線維芽細胞ではなく、上皮細胞から iPS 細胞 を樹立した。β-geo 遺伝子(β-ガラクトシダーゼとネオマイシン耐 性遺伝子の融合遺伝子)を Fbx15 遺伝子座にノックインしたマウス (7)から、肝細胞および胃上皮細胞初代培養(図 1a)を単離した。 Fbx15 遺伝子は、ES 細胞および着床前の胚に特異的に発現してい る遺伝子である。Fbx15 レポーターによって選択された線維芽細胞 (マウス胚性線維芽細胞 [MEF]、または尾端線維芽細胞 [TTF])由 来の iPS 細胞は、遺伝子発現、DNA メチル化パターン、およびキメ ラ形成において ES 細胞とは異なっている(2)。

この肝細胞および胃上皮細胞に、レトロウイルスベクターを用い て4種類の転写因子(Oct3/4、Sox2、Klf4、および c-Myc)を 導入した。レトロウイルスによる上皮細胞への遺伝子導入効率(30 ~45%、図 S1a)は、MEFへの導入効率(>85%、図 S1b)よ りも低かった。希釈したレトロウイルスで MEF に遺伝子導入を行っ て、その効率が30%前後であった場合には、iPS 細胞は得られてい ない(図 S1b)。上皮細胞に遺伝子導入して3日後、血清とG418(ネ オマイシン)を加えた ES 細胞用の培地に交換した。2週間後、その ように低いレトロウイルスによる遺伝子導入効率にもかかわらず、肝 細胞と胃上皮細胞の両方において、G418 耐性で、核が大きく細胞 質に乏しい特徴を持つ ES 細胞様のコロニーが複数観察された。

図1. 成体マウスの肝細胞と胃上皮細胞から作製した iPS 細胞の特徴 a) ゼラチン処理を行ったプレート上での初代肝細胞と胃上皮細胞の形態。 スケールバー=50µm。b) STO フィーダー細胞上での iPS-Hep 細胞と iPS-Stm 細胞の形態。スケールバー=500µm。c) RT-PCR による iPS-Hep 細胞、iPS-TTF 細胞、および ES 細胞における ES 細胞マーカー 遺伝子の発現解析。レトロウイルスによる遺伝子導入には、2 種類の培地 を用いた。A と表示してあるクローンでは無血清培地に EGF と HGF を加 えて用いた。一方、B と表示してあるクローンでは10%の血清培地を用い、 EGF と HGF を使用しなかった。Oct3/4 および Sox2 の発現については、 内在性の転写産物のみ (endo) を増幅するプライマーセットを用いた。泳 動量のコントロールとして、NAT1 を用いた(17)。陰性対照として、 Sox2 については逆転写なし(RT-)の鋳型についても PCR を行った。

Kyoto 606-8507, Japan

² Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan

Breakthrough of Stem Cell Research

図 2. iPS-Hep/Stm 細胞の多能性

a) iPS 細胞由来マウスの腫瘍発生率と死亡率。iPS-MEF 細胞または iPS-Hep/Stm 細胞から作製されたキメラマウス(上段)およびF1マウス (下段)の、腫瘍による累積死亡率(左側)と全死亡率(右側)を示す。「死亡」 は衰弱による屠殺例を含む。死亡例はすべて、死因を検討するために解剖し た。各図の下に示す数字は、各時点で解析されたマウス数を示す。b) iPS-Hep 細胞および iPS-Stm 細胞に由来するキメラマウスにおける高い周 産期死亡率。出生時の生存個体数と死亡個体数を示す。

G418 耐性のコロニーを増殖させたところ、約60%の細胞がマ ウス ES 細胞と区別できない形態を示した(図 1b)。われわれはこれ らの細胞をそれぞれ iPS-Hep (iPS-Hepatic)、および iPS-Stm (iPS-Stomach) と命名した。これらの細胞は増殖能についても ES 細胞と同様の結果を示した(図 S2a)。RT-PCR を行うと、iPS-Hep 細胞(図 1c)と iPS-Stm 細胞(図 S2b)は、ES 細胞と同程度の 内在性の Oct3/4 と Sox2 を発現していることがわかった。また、 iPS-Hep 細胞と iPS-Stm 細胞は、Nanog、Rex1、ECAT1、 Cripto、および Gdf3 など ES 細胞のマーカー遺伝子についても、 ES 細胞と同程度に発現していた。一方、Fbx15 レポーターによって 選択された TTF 由来の iPS 細胞 (iPS-TTF) は、ES 細胞マーカー 遺伝子の発現量が低かった(図1c)。次いで、iPS-Hep細胞と iPS-TTF 細胞の作製時に、2 通りの培養条件を検討した。一方は上 皮成長因子(EGF)と肝細胞増殖因子(HGF)を添加するが血清は 添加しない (図 1c,A)、もう一方は 10%の血清を添加するが、EGF とHGFは添加しない(図1c,B)とした。その結果、両方の培養条 件下で、iPS-Hep 細胞は iPS-TTF 細胞よりも ES 細胞マーカー遺伝 子の発現量が多かった。iPS-Hep 細胞と iPS-Stm 細胞では、 Oct3/4、Nanog、および Fbx15 各遺伝子のプロモーター領域の大 部分が、完全とはいえないものの、非メチル化状態にあった(図 S2c)。 この点についても iPS-TTF 細胞とは対照的であり、iPS-TTF 細胞で は部分的な脱メチル化が認められるのみであった(2)。このように、 (iPS-MEF、iPS-TTF と同様に) Fbx15 遺伝子の発現によって選択 された細胞であるにもかかわらず、iPS-Hep 細胞と iPS-Stm 細胞は iPS-TTF 細胞よりも、ES 細胞によく似ている。

そこで、iPS-Hep 細胞と iPS-Stm 細胞(1×10⁶ 細胞)をヌー ドマウスの後側腹部皮下に移植した(表 S1)。移植から 4 週間後、 全てのマウスで、神経組織、筋肉、軟骨、腸様の上皮組織など三胚葉 に由来するさまざまな組織からなる腫瘍が形成された(図 S3)。この 結果から、iPS-Hep 細胞と iPS-Stm 細胞は多能性を持つことが実証 された。

次にこれらの細胞を、マイクロインジェクションによって胚盤胞 にも移植した(表 S2)。Fbx15 レポーターマウスに由来する 8 種類 のiPS-Hep 細胞のクローンと、6 種類のiPS-Stm クローンをインジェ クションに用いた。さらに、*Nanog* 遺伝子の発現によって選択した 5 種類の iPS-Hep 細胞のクローンについても同様にインジェクショ ンを行った。これらのクローンの大半は、恒常的に活性化している CAG プロモーター(8)によって発現する GFP の導入遺伝子を有し ていた。加えて、選択マーカーなしに形態のみで選択した1種類の iPS-Hep 細胞のクローン(9-11)も移植した。これらのなかから、 iPS-Hep 細胞の10クローン、およびiPS-Stm 細胞の2クローン に由来する成体キメラマウス(毛色によって示されている)が得られ た(図S4a)。Fbx15遺伝子の発現で選択されたiPS-Hep 細胞の1 クローン(21週齢のマウス由来)とiPS-Stm 細胞の2クローン (12週齢のマウス由来)が、生殖細胞系列に導入されたことが、 GFPが発現と導入遺伝子の存在から確認された(図S4b)。この点 に関しても同様に、Nanog遺伝子の発現によって選択された線維芽 細胞(MEFもしくはTTF)由来iPS細胞(iPS-fibroblast)だけが 成体や生殖細胞系列キメラになり、Fbx15によって選択された iPS-fibroblastではそれらが得られなかった(2)ことと対照的であっ た。

次に、iPS-Hep 細胞由来、iPS-Stm 細胞由来、あるいは iPS-MEF 細胞由来のマウス間で腫瘍発生率を比較した。インジェク ションした 12 系統のうち独立した 10 クローンの iPS-MEF から、 46 個体の成体キメラマウスが得られた。これらのキメラマウスのう ち、およそ 30%が 30 週齢までに腫瘍を発生した(図 2a)。一方、 iPS-Hep 細胞と iPS-Stm 細胞の 12 クローンから得られた 65 個体 の成体キメラマウスでは、この期間中に腫瘍の発生は認められなかっ た。さらに、8 種類の iPS-MEF 細胞クローンに由来する F1 マウス のおよそ 20%においても、30 週齢までに腫瘍が発生したが、 iPS-Hep 細胞や iPS-Stm 細胞由来の F1 マウスでは腫瘍は観察され なかった(図 2a)。iPS-Hep 細胞や iPS-Stm 細胞由来のマウスの うちの幾匹かが、通常飼育施設への移動後に死亡したが、これらのマ ウスを剖検しても腫瘍は発見できなかった(図 2a)。

しかし、iPS-Hep 細胞および iPS-Stm 細胞由来のキメラマウス は、非キメラマウスと比較して、周産期死亡率が高かった(図 2b)。 このような周産期における高死亡率は、iPS-MEF 細胞由来のキメラ マウスでは認められなかった。死亡したマウスの剖検を行ったが、肉 眼的な外観は正常で、死因は不明であった。クローン動物によくある と考えられているが(12)、なんらかのエピジェネティックな異常が 周産期死亡の原因であるのかもしれない。一方、生後1日を経過し たマウスでは、死亡率増加は認められなかった(図 2a)。 次に、iPS-Hep 細胞と iPS-Stm 細胞におけるレトロウイルス挿 入部位(RIS)の数を調べた。サザンブロット解析によって、各クロー ンに導入された4種類のレトロウイルスのそれぞれについて、1本か ら4本のバンドが検出された(図3)。この数は MEF-iPS 細胞にお けるバンド数よりも少なく、MEF-iPS 細胞では各レトロウイルスあ たり1カ所から12カ所の RIS が検出された。インバース PCR を用 いて調べたところ、iPS-Hep 細胞の2クローンと iPS-Stm 細胞の2 クローンでは、RIS は複数の染色体にランダムに分布していた(図 S5)。レトロウイルスが挿入された部位の遺伝子は、機能的分類にお いても、その分子の細胞内局在においても、特定の偏向を示さなかっ た(図S6)。RIS はおもにこれらの遺伝子の転写開始位置の近傍に存 在していた(図S7-11)。

われわれのデータは、iPS-Hep 細胞や iPS-Stm 細胞が、3 つの 特性において iPS-fibroblast と異なっていることを示している。第一 に、iPS-Hep 細胞と iPS-Stm 細胞は、Fbx15 遺伝子の発現によっ て選択されているにもかかわらず、成体キメラの形成に寄与している 点である。第二に、検証した 30 週齢までの期間において、iPS-Hep 細胞由来と iPS-Stm 細胞由来のキメラマウスでは、腫瘍発生率の上 昇が認められなかった点である。この2つの特徴は、最近われわれが Myc のレトロウイルスを用いずに樹立した iPS-fibroblast 細胞と似 ている(11)。このことは、iPS-Hep 細胞や iPS-Stm 細胞の樹立に おいては、iPS-fibroblast 細胞の樹立と比較して、Myc が担う役割 がより小さいことを示唆している。この可能性について検討するため、 われわれは4種類の因子から1種類ずつ除外し、肝細胞からの iPS 細胞作製に及ぼす影響を調べた。その結果、Oct3/4、Sox2、また は Klf4 を除外した場合には、iPS 細胞のコロニーは出現しなかった(図 S12a)。一方、Mycを除外した場合には、全4種類を用いて作製し た場合と較べ、コロニー数は20~40%減少したのみであった(図 S12a,b)。この結果は、Myc を除外すると 90%以上もコロニーが減 少した(11) iPS-fibroblast 細胞とは対照的で、肝細胞由来の iPS 細胞樹立における Myc の重要性の低さを支持している。

iPS-Hep 細胞、iPS-Stm 細胞と iPS-fibroblast 細胞との第三の 違いは、前2者の iPS 細胞の RIS が後者の iPS 細胞のそれより少な い点である。レトロウイルスによる4種類の転写因子の発現量は、線 維芽細胞よりも肝細胞において高かった(図S13)。この事実によって、 少なくとも部分的には、iPS-Hep 細胞において RIS が少ない理由を 説明できるであろう。また ES 細胞は、細胞間の緊密な接触や、細胞 表面における E- カドヘリン発現など、上皮細胞としての特徴を持って いることが示されている(13)。われわれは、肝細胞における E-カ ドヘリンと β-カテニンの発現が、線維芽細胞よりも高く、ES 細胞と 同程度であることを確認した(図 S13)。この類似性も、iPS-Hep 細胞と iPS-Stm 細胞において RIS の数が少なくなることに寄与して いると考えられる。iPS-Hep 細胞や iPS-Stm 細胞と iPS-fibroblast 細胞間で、根本的な相違を生じさせる詳細な分子機序 を明らかにするには、さらなる研究が必要であろう。

iPS-Hep 細胞の起源を調べるため、遺伝学的手法による細胞系 列追跡解析を行った(図 4a)。Nanog レポーターマウスでは、iPS 細胞の選択のために GFP 遺伝子とピューロマイシン耐性遺伝子が Nanog 遺伝子にノックインされているが、まずこのマウスとアルブ ミンプロモーターによって Cre リコンビナーゼを発現するトランス ジェニックマウス(14)を交配させ、その後さらに恒常的に活性化 しているプロモーター下で loxP-CAT-loxP- β -gal (β - ガラクトシ ダーゼ)カセットを発現するトランスジェニックマウス(15)と交 配させた。このトリプルトランスジェニックマウスでは、アルブミン 遺伝子の活性化に伴ってβ-gal 活性が誘導され、アルブミン遺伝子の 発現が停止してもβ-gal 活性は持続する。このマウスから初代肝細胞 を単離し、4種類の因子を導入して iPS 細胞を作製した。遺伝子導入 から14日後、ピューロマイシンによる選択を開始した。遺伝子導入 後 30 日までに、100 個以上の GFP 陽性のコロニーが得られた(図 4b 左と中央)。その大半はβ-gal陽性でもあったことから(図4b 右)、 iPS-Hep 細胞は肝細胞か、あるいは他のアルブミン発現細胞に由来 しており、アルブミンを発現しない未分化細胞に由来するものではな いことがわかった。GFP 陽性でβ-gal 陰性のコロニーも散見された が、それらは肝細胞の初代培養に混在していたアルブミン陰性の細胞 から生じたか、もしくは単純に Cre リコンビナーゼによる不完全な組 換えを反映していると考えられる。

以上の結果を総括すると、今回の研究は、4 種類の転写因子を用 いることで、アルブミンプロモーターが活性化される段階まで分化が 進んだ体細胞の初期化に成功したことを示している。さらにわれわれ は、iPS-Hep 細胞や iPS-Stm 細胞の樹立にあたり、ゲノムの特定の 部位へのレトロウイルスの挿入は必要でないことも明らかにした。こ の知見は、患者への移植後に腫瘍形成の懸念があるゲノムへ挿入 (16)を用いない遺伝子導入法により、iPS 細胞の樹立が可能である ことを示唆している。

図3. iPS-Hep 細胞と iPS-Stm 細胞におけるレトロウイルス挿入部位 iPS-Hep 細胞と iPS-Stm 細胞のクローンにおける、レトロウイルスを用いて 挿入された Oct3/4、Sox、KIf4、および c-Myc 遺伝子のサザンブロット解析。 iPS-Stm 細胞、iPS-Hep 細胞、iPS-MEF 細胞、および野生型 ES 細胞から単 離したゲノム DNA を解析した。検出されたバンド数を下段に示す。矢印は内在 性の遺伝子座に相当するバンドを示す。白の矢印は Oct3/4 の偽遺伝子に相当 するバンドを示す。

Breakthrough of Stem Cell Research

図 4. アルブミン発現細胞に由来する iPS-Hep 細胞

a)細胞運命の追跡方法。b)トリプルトランスジェニックマウス肝細胞に由来する iPS 細胞コロニーの位相差顕微鏡、蛍光顕微鏡、および X-gal 染色の各写真。赤の 矢印は *β*-gal 陰性コロニーを示す。スケールバー=2mm。 17. S. Yamanaka, K. S. Poksay, K. S. Arnold, T. L. Innerarity, Genes Dev II, 321 (1997).
18. We thank M. Koyanagi and K. Tanabe for scientific discussion; M. Narita, H. Miyachi, S. Kitano for technical assistance; and R. Kato and R. Iyama for administrative assistance. We also thank J. Miyazaki for CAG-CAT-Z mice, T. Kitamura for Plat-E cells and pMXs retroviral vectors, and R. Farese for RF8 ES cells. This study was supported in part by a grant from the Program for Promotion of Fundamental Studies in Health Sciences of NIBIO, a grant from the Leading Project of MEXT, a grant from Uchara Memorial Foundation, and Grants-in-Aid for Scientific Research of JSPS and MEXT (to S.Y.). T. A. and K.O. are JSPS research fellows. K.Y. is an Inoue fellow.

*Originally published in Science Express on 20 December 2007 Science 21 December 2007: Vol.318 .no. 5858,pp.1917-1920

ヒト体細胞からの人工多能性幹細胞誘導

Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells

Junying Yu,^{1,2*} Maxim A. Vodyanik,² Kim Smuga-Otto,^{1,2} Jessica Antosiewicz-Bourget,^{1,2} Jennifer L. Frane,¹ Shulan Tian,³ Jeff Nie,³ Gudrun A. Jonsdottir,³ Victor Ruotti,³ Ron Stewart,³ Igor I. Slukvin,^{2,4} James A. Thomson^{1,2,5*}

- 1 Genome Center of Wisconsin, Madison, WI 53706-1580, USA.
- 2 Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715–1299, USA.
- 3 WiCell Research Institute, Madison, WI 53707-7365, USA.

4 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.

- 5 Department of Anatomy, University of Wisconsin-Madison, Madison, WI 53706-1509, USA.
- * To whom correspondence should be addressed. E-mail: jyu@primate.wisc.edu (J.Y.); thomson@primate.wisc.edu (J.A.T.)

体細胞の核移植により、哺乳類の卵に存在する trans-acting 因子が 体細胞核を未分化状態に初期化することが可能になる。我々は、4つ の転写因子(Oct4、Sox2、Nano、Lin28)によって、ヒト体細胞 を、ES細胞の主要な特徴を示す多能性幹細胞へと初期化できること を示す。このヒト人工多能性幹細胞は、正常核型、テロメラーゼ活性、 ES細胞を特徴づける細胞表面マーカーおよび遺伝子発現、3胚葉系 に由来する組織への分化能力を有する。技術的な制約(例えば、ウイ ルスの挿入による変異)が解消すれば、このようなヒト人工多能性幹 細胞は移植医療への応用のみならず、新たな疾患モデルの創出や薬剤 の開発において有用なものになるであろう。

・ 新教の胚形成においては、厳密な時間的順序で各発達段階が精巧につくり上げられる。とはいえ、発達はジェネティックな事象よりもむしろエビジェネティックな事象によって決定されるため、分化は原則として可逆的である。ドリーのクローニングによって、哺乳類の分化した細胞に由来する核は、卵細胞内に存在するtrans-acting因子によって未分化状態へ初期化できることが実証され(1)、この発見は、体細胞核移植によらずに同様の初期化を起こしうる因子の探索につながった。最近になって、4つの転写因子(Oct4、Sox2、c-myc、Klf4)があれば、マウスの線維芽細胞を未分化な多能性幹細胞[人工万能細胞(iPS細胞)と呼ばれる]へ初期化できることが示された(2-5)。特定の因子によるヒト細胞の

初期化が可能なら、体細胞核移植なしで患者特異的な多能性細胞株を 樹立できるであろう。しかし、c-Mycの発現はヒトES 細胞の死滅・ 分化を引き起こすことが観察されていることから、この遺伝子を含ま ない因子の組み合わせがヒト細胞の初期化には必要であることが示唆 される(6)。今回、OCT4、SOX2、NANOG、LIN28があれば、 ヒト体細胞の初期化が可能であることを報告する。

ヒトES細胞は、細胞融合によって骨髄前駆細胞を初期化するこ とができる(7)。初期化因子候補を特定するため、骨髄前駆細胞と比 べてヒトES細胞において高密度で発現している遺伝子のリストを作 成し、多能性の確立または維持への既知の関与度に基づいて、リスト に優先順位をつけた(表S1)。続いて、これらの遺伝子をクローニ ングして、レンチウイルスベクターに組み込み(図S1)、相同組換 えによって作製したOCT4 ノックインヒトES細胞株の分化誘導細 胞を初期化できる遺伝子の組み合わせがあるかどうかを調べた(8)。 この細胞株では、細胞をジェネティシン耐性にさせるネオマイシンホ スホトランスフェラーゼの発現が、内在性のOCT4 プロモーターに より誘導される。OCT4 は、多能性細胞で高度に発現しているが、 分化した細胞では発現しない。したがって、ジェネティシンにより選 択することで、OCT4 プロモーターを再活性化する初期化の事象を 捉えることができると考えられる。そこで14 遺伝子を選んで組み 合わせてみた。 最初の組み合わせ(表 S2)によって、ヒトES 細胞由来の CD45⁺ 造血細胞から得た接着細胞が初期化され(7,9)、ES 細胞様の形をし たジェネティシン耐性(*OCT4*⁺) コロニーが形成された(図 S2A) (10)。これらのジェネティシン耐性コロニーは、典型的なヒトES 細胞特有の細胞表面マーカーを発現し(図 S2B)、免疫抑制状態の 重症複合免疫不全ベージュマウスに注入すると、奇形腫が形成された (図 S2C)。

最初の14遺伝子の組み合わせを調べることにより、ヒトES細胞から間葉系細胞の特徴を示す体細胞を初期化できる4遺伝子 OCT4、SOX2、NANOG、LIN28という一組のコアセットを同定 した(図1A、図S3)。このコアセット、すなわち

reprogramming mixture から、OCT4 または SOX2 を除去すると、 ジェネティシン耐性(OCT4⁺)を示す初期化された間葉系細胞のク ローン出現が見られなくなった(図1A)。NANOGは、ヒトES 細 胞由来の間葉系細胞からのクローン回収(clone recovery)に有効 であったが、そのようなクローンの出現には必須でなかった(図1A)。 細胞融合を介した初期化実験では、マウス ES 細胞に Nanog を過剰 発現させると、初期化効率が 200 倍以上増加したことが報告されて おり(11)、今回の結果はそれと矛盾しない。NANOGの発現は、ヒ トES 細胞のクローニング効率も向上させる(12)ことから、早期に 初期化された細胞の生存率を高めると考えられる。LIN28 は、初期 化された間葉系細胞のクローン回収に対し、Nanog と同様の傾向で はあるがより軽度の影響しか及ぼさなかった(図1A)。

続いて、OCT4、SOX2、NANOG、LIN28が、遺伝子操作されていないヒト2倍体初代線維芽細胞を初期化するのに十分であるかどうかを検証した。まず IMR90 胎児線維芽細胞を選択した。これらのヒト2倍体細胞は、ENCODE Consortium によってその特性が詳細に明らかにされている(13)のみならず、American Type Culture Collection [(ATCC)、カタログ番号 CCL-186] から容易に入手できるとともに、DNA フィンガープリントが公表されているために初期化されたクローンの起源の確認が可能であることが、選択の理由であった。IMR90 細胞はまた、老化するまでに 20 継代以上にわたり活発に増殖するが、ヒトES 細胞培養条件下では増殖速度

図 1 ヒト OCT4 ノックイン H1 ES 細胞に由来する間葉系細胞を用いたヒト 初期化遺伝子の組み合わせの最適化

(A) M4 (*OCT4*、*NANOG*、*SOX2*、*LIN28*) reprogramming mixture か ら各遺伝子を除いた場合の影響。ヒト iPS コロニーは、レンチウイルスによる 遺伝子導入後 15 日目に計数した。対照は、遺伝子を導入していない細胞、あ るいは *NANOG* のみを導入した細胞を表す。調製法の異なる (different preparations) 間葉系細胞を用いた 3 回の独立した実験で、初期化因子の組み 合わせから *OCT4* または *SOX2* を個々に除去すると、初期化されたクローン が出現しなくなったのに対し、*NANOG* または *LIN28* を除いた場合には、初 期化されたクローンは減少したものの、完全にはなくならなかった。表示した データは 1 回の代表的な実験の結果である。(B) IMR90 線維芽細胞 (p18) と iPS (IMR90) -3 (p18+p18) の明視野像。1 番目の p18 は IMR90 線 維芽細胞の継代数、2 番目の p18 は初期化されたクローンが放射線照射マウス 胚線維芽細胞(MEF)上で18代継代されたことを表す。スケールバー=50 μ m。 は遅くなる。この違いが、初期化されたクローンの増殖に有利となり、 形態学的基準(コンパクトなコロニー、高い核/細胞質比、著明な核 小体など)のみによる選択に役立つ(14,15)。IMR90 細胞に、 OCT4、SOX2、NANOG、LIN28の組み合わせを導入した。導入 から12日後に、ヒトES 細胞の形態を示すコロニー(iPS コロニー) が初めて見えるようになった。20日目には、当初90万個の IMR90 細胞から、計198個の iPS コロニーが確認されたが、遺伝 子導入のない対照群では iPS コロニーは認められなかった。41 個の iPS コロニーを選択したところ、うち35 個がさらに3週間順調に増 殖した。分化度の低い4つのクローン [iPS (IMR90) -1 ~ iPS (IMR90) -4] を選別し、培養を継続するとともに、詳細な解析を行っ た。

4つの iPS (IMR90) クローンはそれぞれ、典型的なヒト ES 細胞の形態を示し(図1B)、培養6週間後および17週間後ともに 正常核型を有した (図 2A)。各 iPS (IMR90) クローンは、テロメラー ゼ活性(図2B)と、ヒトES細胞に特異的な細胞表面抗原 SSEA-3、SSEA-4、Tra-1-60、Tra-1-81 (図 2C) を発現したの に対し、親 IMR90 細胞はこれらを発現しなかった。4 つの iPS (IMR90) クローンの遺伝子発現をマイクロアレイ解析したところ、 5つのヒトES細胞株(H1、H7、H9、H13、H14)との類似性と、 IMR90 細胞との相違性が確認された(図3、表S3、図S4)。各 iPS(IMR90)クローン間で遺伝子発現にはある程度のばらつきが認 められたが (図 S5)、その差は、各ヒト ES 細胞株間の差より小さかっ た(図 3A、表 S3)。iPS(IMR90)クローンそれぞれにおいて、内 在性 OCT4 および NANOG の発現は、ヒト ES 細胞での発現と同様 のレベルであったが、同2種の外来性遺伝子の発現はクローン間、遺 伝子間で異なった(図 3B)。OCT4 については、導入遺伝子からの 若干の発現がすべてのクローンで検出されたが、NANOG については、 ほとんどのクローンでわずかな外因性発現が認められたのみであった ことから、初期化時の導入遺伝子のサイレンシング(発現抑制)が示 唆される。OCT4 プロモーターのメチル化状態を解析すると、ヒト ES 細胞と IMR90 細胞ではメチル化状態が異なることがわかった(図 S6)。4 つの iPS (IMR90) クローンはすべて、その脱メチル化パター ンがヒトES 細胞に類似し、親 IMR90 細胞とは異なっていた。胚様 体(図S7)と奇形腫形成(図4)ではともに、初期化された4つの iPS(IMR90)クローンすべてに、3 胚葉系へと分化する能力が認め られた。DNA フィンガープリント解析 [short tandem repeat (STR) マーカーによる] では、これらの iPS クローンが IMR90 細 胞に由来することが確認されるとともに、われわれが研究室に保有す るヒトES細胞株には由来しないことが確認された(表S4)。 IMR90 細胞については、ATCC ウェブサイトに掲載されている STR 解析と同じプライマーセットが用いられており、これらの実験 で用いた IMR90 細胞の同一性が確認できる。iPS(IMR90)クロー ンは、ヒトES細胞と同じ比率(1:6)、同じ頻度(5日毎)で継代さ れ、倍加時間は同一条件下で評価したヒトH1 ES 細胞株と同等であ り (表 S5)、本稿作成時点で、複製停止 (replicative crisis)の期 間もなく 22 週間培養が継続されている。最初に 6 ウェルプレートの 4 ウェル分の iPS 細胞(1 ウェル当り 1 クローン、約 100 万細胞に 相当)から開始し、さらに4週間の培養後、10cm 培養皿計40枚分(約 3億5,000万細胞)のiPS (IMR90) クローン4つが凍結保存され、 正常核型を有することが確認された。

IMR90 細胞は胎児に由来するため、次に出生後の線維芽細胞の 初期化を検討した。ヒト新生児包皮線維芽細胞(ATCC、カタログ番 号 CRL-2097)に、OCT4、SOX2、NANOG、LIN28を導入した。 60 万個の包皮線維芽細胞から、57 個の iPS コロニーが得られた。 遺伝子を導入していない対照群では、iPS コロニーは認められなかっ た。選択したコロニー 29 個中 27 個が、3 代にわたり順調に継代さ れた。うち 4 個 [iPS (foreskin) -1 ~ iPS (foreskin) -4] を選択し、 培養を継続して解析を行った。iPS (foreskin) クローンの DNA フィ ンガープリントは、ATCC ウェブサイトに掲載されている親線維芽細 胞株のフィンガープリントと一致した(表 S4)。

4つの iPS (foreskin) クローンはそれぞれ、ヒトES 細胞の形 態を示し(図 S8A)、正常核型を有し(図 S8B)、テロメラーゼ、細 胞表面マーカー、およびヒトES 細胞に特有の遺伝子を発現した(図 2、図 3、図 S5)。4つの iPS (foreskin) クローンはそれぞれ活発 に増殖し、本稿作成の時点で17週間培養が継続されている。胚様体 と奇形腫の両方において、各クローンは多系統への分化を示した(図 S9、図 S10)。しかし、iPS (IMR90) クローンとは異なり、クロー ン間で分化の方向性に差異のあることが、5週間後に検討した奇形腫 で明らかとなった。とくに、神経分化は iPS (foreskin) クローン1 および 2 による奇形腫で多く認められたが(図 S9A)、iPS (foreskin)クローン3および4による奇形腫ではほぼ認められなかった。そのかわりに、原始外胚葉を示唆する円柱上皮細胞の増殖巣が多数認められた(図 S9D)。これは、胚様体での結果に一致している。 胚様体のデータ(図 S10)では、iPS(foreskin)クローン3および4におけるPAX6(神経マーカー)の増加がその他のクローンに比べて小さく、その差はNANOGおよびOCT4の発現が抑制されないことと相関していた。このような差の原因としては、これらのクローンに存在する特定の組み込み部位が、レンチウイルスにより導入された遺伝子の高発現を持続させ、分化を部分的に阻害したことが考えられる。

4種の導入遺伝子のポリメラーゼ連鎖反応(PCR)により、 OCT4、SOX2、NANOGは4つのiPS(IMR90)クローンすべてと、 4つのiPS(foreskin)クローンすべてに組み込まれているが、 LIN28は1つのiPS(IMR90)クローン[iPS(IMR90)-4]と 1つのiPS(foreskin)クローン[iPS(foreskin)-1]に組み込ま れていないことが明らかとなった(図2D)。したがってLIN28は、 初期化の頻度に影響を及ぼし得るものの(図1A)、これらの結果から、 初期化の開始に絶対的に必要なわけではなく、その後、初期化された 細胞の安定した増殖に必須であるわけでもないことが確かめられた。

図 2 IMR90 線維芽細胞の初期化

(A) iPS (IMR90) -3 (p18+p23)のGバンド法による染色体分析。(B)以下のテロメラーゼ活性を示す: iPS (IMR90) -1 ~ iPS (IMR90) -4、p18+p22 (20) [p18 は IMR90 線維芽細胞の継代数を、p22 (20) は初期化されたクローンが、MEF で2代、MEF で調整したヒトES 細胞用培地 (CM)のマトリゲル上で20代の計22代継代されたことを表す]: IMR90、p18; iPS (foreskin) -1 ~ iPS (foreskin) -4、p10+p9 (5):包皮、p10:H1 ESC (ヒトH1 ES 細胞)、p63 (13) [MEF で50代、CM のマトリゲル上で13代の計63代継代された]。データは、3回のテロメラーゼ活性測定による平均±SD

で示す。(C) ヒト ES 細胞特異的な細胞表面マーカーのフローサイトメトリー による発現解析。灰色線、アイソタイプコントロール:黒色線、抗原染色。 iPS (IMR90) -3、p18+p5 (3):IMR90、p18:iPS (foreskin) -3、 p10+p8 (4):包皮、p10。(D) iPS 細胞におけるプロウイルス組み込み。 導入遺伝子に特異的なプライマーを用いて、OCT4、NANOG、SOX2、 LIN28 プロウイルスを増幅した。一方、内在性 OCT4 遺伝子 (OCT4endo) に特異的なプライマーを、陽性対照として用いた。

図3 iPS 細胞の網羅的遺伝子発現解析

(A) iPS (IMR90) クローン [p18+p6 (4)]、IMR90 線維芽細胞 (p19)、 iPS (foreskin) クローン [p10+p7 (3)]、包皮線維芽細胞 (p10)、5つ のヒトES 細胞株すなわちH1 [p42 (12)]、H7 [p73 (3)]、H9 [p50 (5)]、H13 [p43 (5)]、H14 [p61 (5)] ES 細胞 (GEO accession number GSE9164) における全遺伝子発現 (転写物 47,759 個) に関す る Pearson の相関分析。1-PCC、Pearson の相関係数。(B) iPS (IMR90) [p18+p6 (4)] および iPS (foreskin) クローン [p10+p7 (3)] における OCT4 および NANOG 発現の定量的逆転写 PCR 分析。IMR90、 p19:包皮線維芽細胞、p10:H1 ESC、p42 (12)。「内在性 (endogenous)」 は、3' 非翻訳領域に含まれるプライマーによって、内在性遺伝子のみの発現 が解析されることを表す。一方「トータル (total)」は、コード領域のプライ マーによって、内在性遺伝子と、存在するのであれば導入遺伝子の両方の発 現が解析されることを表す。データは、3 回の定量 PCR による平均 ±SD で 示す。

Breakthrough of Stem Cell Research

今回報告したヒト iPS 細胞は、胚に由来しないという重要な点を除 いて、われわれがもともとヒトES細胞に提唱した定義基準(14)に合致 している。ヒトES 細胞と同様に、ヒト iPS 細胞は、ヒト組織の発生と 機能の研究、新薬の発見と検証、さらに移植医療にも有用となることが 期待される。自己免疫疾患は例外として、こうした細胞を用いる移植治 療では、患者特異的な iPS 細胞株によって、免疫拒絶への懸念の大部分 が解消されるはずである。しかし、これらの細胞が臨床で用いられるよ うになるまでには、挿入部位に変異を入れる可能性があるゲノムへのべ クターの組み込みを回避するための更なる研究が必要であることを、理 解しておくことが重要である。医薬品開発においては、ヒト iPS 細胞に よって、集団の遺伝的多様性をより厳密に反映した細胞株パネルの作製 が容易になり、また特定の疾患の素因がある人から細胞株を樹立するこ とが可能になると期待される。ヒト ES 細胞は、ヒトの着床前胚を破壊 して誘導されるため、なお議論の余地はあるが、iPS 細胞ではこの懸念 はなくなる。しかし、臨床的に重要な諸問題において、ヒト iPS 細胞が ES 細胞と異なるのか否かについての更なる研究が必要である。

References and Notes

- 1. I. Wilmut, A. E. Schnieke, J. McWhir, A. J. Kind, K. H. Campbell, Nature 385, 810 (1997).
- 2. N. Maherali et al., Cell Stem Cell 1, 55 (2007).
- 3. K. Okita, T. Ichisaka, S. Yamanaka, Nature 448, 313 (2007).
- 4. K. Takahashi, S. Yamanaka, Cell 126, 663 (2006).
- 5. M. Wernig et al., Nature 448, 318 (2007).
- 6. T. Sumi, N. Tsuneyoshi, N. Nakatsuji, H. Suemori, Oncogene 26, 5564 (2007).
- 7. J. Yu, M. A. Vodyanik, P. He, I. I. Slukvin, J. A. Thomson, Stem Cells 24, 168 (2006).
- 8. T. P. Zwaka, J. A. Thomson, Nat. Biotechnol. 21, 319 (2003).
- 9. M. A. Vodyanik, J. A. Bork, J. A. Thomson, I. I. Slukvin, Blood 105, 617 (2005).
- 10. Materials and methods are available as supporting material on Science Online.
- 11. J. Silva, I. Chambers, S. Pollard, A. Smith, Nature 441, 997 (2006).
- 12. H. Darr, Y. Mayshar, N. Benvenisty, Development 133, 1193 (2006).
- E. Birney et al., Nature 447, 799 (2007).
 J. A. Thomson et al., Science 282, 1145 (1998).
- 15. A. Meissner, M. Wernig, R. Jaenisch, Nat. Biotechnol. 25, 1177 (2007).

16. We thank the Charlotte Geyer Foundation for their support. Other funding included NIH grants P51 RR000167 and P20 GM069981. We thank K. J. Heidarsdottir, B. K. Gisladottir, M. Probasco, and C. Glennon for technical assistance, and D. J. Faupel for critical reading of themanuscript. The authors declare competing financial interests. J.A.T. owns stock, serves on the Board of Directors, and serves as Chief Scientific Officer of Cellular Dynamics International and Stem Cell Products. J.A.T. also serves as Scientific Director of the WiCell Research Institute. Microarray data have been deposited in the Gene Expression Omnibus (GEO) database (accession number GSE9164).

図4 iPS (IMR90) 細胞の多能性

iPS (IMR90) - 1 (注入 9 週間後) の奇形腫切片のヘマトキシリン - エオジ ン染色。MEF 上の 6 ウェルプレート 2 枚分の iPS (IMR90) - 1 細胞 (集密 度約 60 ~ 70%) をマウス 2 匹の後肢筋に注入した。最初の遺伝子導入から 7 週間後および 15 週間後に注入した、4 つの iPS (IMR90) クローンすべ てから奇形腫が得られた。2 匹の対照マウスそれぞれに、約 1,200 万個の IMR90 (p19) 線維芽細胞を注入したが、奇形腫は形成されなかった。(A) 神経組織 (外胚葉):(B) 軟骨 (中胚葉):(C) 腸上皮 (内胚葉)。スケールバー =0.1mm。

おわりに

邦訳につきましては細心の注意を払っておりますが、情報の正確性、専門性について、Science およびコスモ・バイオ はいかなる責任を負うものではありません。正確な情報は必ず原文でご確認ください。

監修:京都大学再生医科学研究所 再生誘導研究分野 青井 貴之先生

協力: AAAS / Science Japan

提供:コスモ・バイオ株式会社

表紙:イメージ写真(フィーダー細胞上でのサル ES 細胞増殖像から)

この企画には、AAAS/Science Japan と山中伸弥先生のご協力を頂戴いたしました。 ここにあらためて感謝申し上げます。

コスモ・バイオは、再生医学や関連技術、そして広く生命科学の進歩進展に貢献できれば幸いと考えます。 関連試薬、培地などお気軽にご相談ください。

> 発行責任者 コスモ・バイオ株式会社 製品情報部 櫻井治久 〒135-0016 東京都江東区東陽二丁目 2-20 e-mail: service@cosmobio.co.jp