KillerTRAIL™ Protein (soluble) (human), (recombinant)

Product Literature References

•CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells: M. El-Mesery, et al.; Cell Death Dis. 4, e916 (2013), **Application(s):** Stimulation of IL-8 production in HeLa and HeLa-CD40 transfected cells. **Abstract:**

•High expression of crystallin αB represents an independent molecular marker for unfavourable ovarian cancer patient outcome and impairs TRAIL- and cisplatin-induced apoptosis in human ovarian cancer cells: J. Volkmann, et al.; Int. J. Cancer 132, 2820 (2013), **Application(s):** Apoptosis induced in human ovarian cancer cells (OV-MZ-6 and HEY), **Abstract:** **Full Text**

•ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis: S.A. Quast, et al.; Cell Death Dis. 10, e839 (2013), **Abstract:** **Full Text**

•General Sensitization of Melanoma Cells for TRAIL-Induced Apoptosis by the Potassium Channel Inhibitor TRAM-34 Depends on Release of SMAC: S.A. Quest, et al.; Plos One 7, e39290 (2012), **Abstract:** **Full Text**

•Role of Apollon in Human Melanoma Resistance to Antitumor Agents That Activate the Intrinsic or the Extrinsic Apoptosis Pathways: E. Tassi, et al.; Clin. Cancer Res. 18, 3316 (2012), **Application(s):** Death induction of human melanoma cells, **Abstract:** **Full Text**

•Inhibition of SREBP1 sensitizes cells to death ligands: Y. Eberhard, et al.; Oncotarget 2, 186 (2011), **Abstract:** **Full Text**

•Sensitization of melanoma cells for death ligand-induced apoptosis by an indirubin derivative—Enhancement of both extrinsic and intrinsic apoptosis pathways: A. Berger, et al.; Biochem. Pharmacol. 81, 71 (2011), **Abstract:**

•Sensitization of melanoma cells for TRAIL-induced apoptosis by BMS-345541 correlates with altered phosphorylation and activation of Bax: A. Berger, et al.; Biochem. Pharmacol. 81, 71 (2011), **Abstract:**

•FOXO3A as a key molecule for all-trans retinoic acid-induced granulocytic differentiation and apoptosis in acute promyelocytic leukemia: Y. Sakoe, et al.; Blood 115, 3787 (2010), **Application(s):** Death induction of NB4 cells, **Abstract:** **Full Text**

•Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature: C. Lavazza, et al.; Blood 115, 2231 (2010), **Application(s):** Multiple myeloma killing studies in mice, **Abstract:** **Full Text**

•Lipopolysaccharide-induced expression of TRAIL promotes dendritic cell differentiation: Y.S. Cho, et al.; *Immunology* 130, 504 (2010), **Abstract:** **Full Text**
• Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains: B. Miao, et al.; PNAS 107, 20126 (2010), Application(s): Death induction of sensitized U87MG cells, Abstract; Full Text
• HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells: R.R. Nair, et al.; Mol. Cancer Ther. 8, 2441 (2009), Application(s): Death induction of H929 cells, Abstract; Full Text
• IFN-α-Induced Apoptosis in Hepatocellular Carcinoma Involves Promyelocytic Leukemia Protein and TRAIL Independently of p53: K. Herzer, et al.; Cancer Res. 69, 855 (2009), Application(s): Death induction of Hep3B, Huh7, Huh6, HepG2 and Chang cells, Abstract; Full Text
• Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-κappaB but is related to downregulation of initiator caspases and DR4: B.M. Kurbanov, et al.; Oncogene 26, 3364 (2007), Abstract; Full Text
• Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1: M. MacFarlane, et al.; Cell Death Differ. 12, 773 (2005), Abstract;

• Telomerase-Dependent Virotherapy Overcomes Resistance of Hepatocellular Carcinomas against Chemotherapy and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand by Elimination of Mcl-1: T. Wirth, et al.; Cancer Res. 65, 7393 (2005), Application(s): Death induction of sensitized Huh7 and Hep3B cells and Hep3B-derived s.c. tumor xenografts in mice, Abstract; Full Text

• Autocrine Secretion of Fas Ligand Shields Tumor Cells from Fas-Mediated Killing by Cytotoxic Lymphocytes: K. Hallermalm, et al.; Cancer Res. 64, 6775 (2004), Application(s): Death induction of Jurkat cells and death induction trials with OCM1 and OCM8 cells, Abstract; Full Text

• HPC1/RNASEL Mediates Apoptosis of Prostate Cancer Cells Treated with 2',5'-Oligoadenylates, Topoisomerase I Inhibitors, and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand: K. Malathi, et al.; Cancer Res. 64, 9144 (2004), Application(s): Death induction of prostate epithelial cells, DU145 and PC3 cells, Abstract; Full Text

• The Human Papillomavirus Type 16 E5 Protein Impairs TRAIL- and FasL-Mediated Apoptosis in HaCaT Cells by Different Mechanisms: K. Kabsch & A. Alonso; J. Virol. 76, 12162 (2002), Application(s): Death induction of HaCaT and A31 cells, Abstract; Full Text

• TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors: M. Plasilova, et al.; Leukemia 16, 67 (2002), Abstract; Full Text

• TRAIL and its receptors in the colonic epithelium: a putative role in the defense of viral infections: J. Sträter, et. al.; Gastroenterology 122, 659 (2002), Abstract;

• The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines: Q. Liao, et al.; FEBS Lett. 503, 151 (2001), Abstract;

• The cytokines tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papilloma: J.R. Basile, et al.; J. Biol. Chem. 276, 22522 (2001), Abstract; Full Text