
M710-N ABEE Labeling Kit

糖の分析と定量性

1. 糖の分析

一度に中性糖・ウロン酸・シアル酸・デオキシ糖など 14 種類の糖を分析できます

ABEE Labeling Kit で標識化した糖は、ホウ酸緩衝液を用いたHPLCで分離分析できます。 $^{1)}$ 1 4 種類の糖を一度で分析できる条件を確立しました(図 1 ①アセトニトリル濃度 7 %)。また、移動相のアセトニトリル濃度を変化させるだけで、生体試料に含まれる 8 種類の糖(図 1 ②アセトニトリル濃度 9%)、主要な 6 種類の糖(図 1 ③アセトニトリル濃度 11%)を短時間で分析できる条件も確立しました。この分析条件の移動相は、糖分析用移動溶媒セットで簡単に調製できます。

糖略称	名称
GlcA	グルクロン酸
GalA	ガラクツロン酸
Gal	ガラクトース
Man	マンノース
Glc	グルコース
Ara	アラビノース
Rib	リボース
ManNAc	N-アセチルマンノサミン
Xyl	キシロース
GlcNAc	N-アセチルグルコサミン
Fuc	フコース
Rha	ラムノース
dGlc	デオキシグルコース
GalNAc	N-アセチルガラクトサミン

図1 アセトニトリル濃度の違いによる溶出変化

①7%:14種類の糖の分離 ②9%:生体試料に含まれる8糖の分離 ③11%:主要な6糖の分離

文献 1) Yasuno, S., et al., Biosci. Biotech. Biochem., 61, 1944(1997).

1 試料で多種類の糖分析、分析時間の短縮など、目的に合わせて分析条件を選択できます

ABEE で標識化された糖は、糖分析用カラム HonenpakC18 を用いて 2 種類の条件 (①トリフルオロ酢酸(TFA)の系、②ホウ酸緩衝液の系) で分析することができます。目的に合わせて分析条件をお選びください。

①トリフルオロ酢酸(TFA)の系

- 1. アミノ糖の検出ができる
- 2. 加水分解後の再アセチル化を必要としない
- 3. 分析時間が短い
- 4. 移動相の調製が簡単

②ホウ酸緩衝液の系

 分離しにくい同分子量の単糖 (例: Gal、Glc、Man など) が きれいに分離できる

- 2. 試薬などに由来するグルコースの混入を無視できる
- 3. ウロン酸の検出ができる

糖略称	糖名称	溶出時間(min.)	
		①TFA	②ホウ酸
GlcN	ク˙ ルコサミン	6.7	n.d.
GalN	カ゛ラクトサミン	7.4	n.d.
ManN	マンノサミン	6.9	n.d.
GlcA	グルクロン酸	n.d.	7.0
GalA	ガラクツロン酸	n.d.	7.7
Gal	カ゛ラクトース	13.4	10.4
Man	マンノース	14.2	13.3
Glc	グルコース	13.6	15.5
Ara	アラヒ゛ノース	16.3	16.6
Rib	リホ゛ース	16.1	18.8
ManNAc	N-アセチルマンノサミン	18.3	20.6
Xyl	キシロース	16.6	22.0
GlcNAc	N-アセチルク [*] ルコサミン	18.6	23.2
Fuc	フコース	21.4	25.5
Rha	ラムノース	22.2	29.3
dGlc	デオキシグルコース	n.d.	34.1
GalNAc	N-アセチルカ [*] ラクトサミン	22.0	41.6

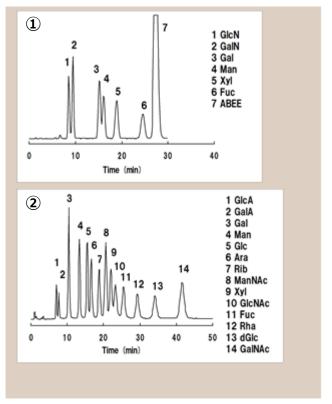


図2 各移動相の分析例

ี่ ภรั∆ : HonenpakC18

移動相 : ①0.02% TFA/アセトニトリル(90/10)

20.2M ホウ酸カリウム緩衝液(pH8.9)/アセ

トニトリル(93/7)

流速 : 1ml/min. カラム温度 : 30°C

検出 : 蛍光 (Ex.305nm, Em.360nm)

2. 定量性

ABEE 標識化した糖の定量性

広範囲(0.2~50nmol)にわたって直線性よく糖を標識化・定量分析することができます。

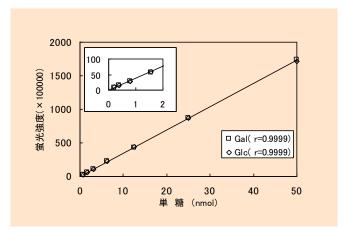


図3 ABEE 標識化したガラクトースとグルコースの蛍光強度