• ホーム
  • タンパク質のリン酸化、アセチル化およびメチル化データセットの統合により、肺がんのシグナル伝達ネットワークの概要を描きだす

タンパク質のリン酸化、アセチル化およびメチル化データセットの統合により、肺がんのシグナル伝達ネットワークの概要を描きだす

Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks

Research Resources

Sci. Signal. 22 May 2018:
Vol. 11, Issue 531, eaaq1087
DOI: 10.1126/scisignal.aaq1087

Mark Grimes1,*, Benjamin Hall2, Lauren Foltz1, Tyler Levy2, Klarisa Rikova2, Jeremiah Gaiser1, William Cook1, Ekaterina Smirnova1, Travis Wheeler1, Neil R. Clark3, Alexander Lachmann3, Bin Zhang2, Peter Hornbeck2, Avi Ma'ayan3, and Michael Comb2

1 Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA.
2 Cell Signaling Technology, Danvers, MA 01923, USA.
3 Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS (Big Data to Knowledge Library of Integrated Network-based Cellular Signatures) Data Coordination and Integration Center, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA.

* Corresponding author. Email: mark.grimes@mso.umt.edu

要約

タンパク質の翻訳後修飾(PTM)は通常独立して研究されているが、多くのタンパク質は複数の種類のPTMにより修飾されており、細胞シグナル伝達経路はこの情報を何らかの形で統合している。われわれは、PTM特異的抗体を用いた免疫沈降法とタンデム質量タグ(TMT)質量分析を組み合わせ、45の肺がん細胞株におけるリン酸化、メチル化およびアセチル化を、正常肺組織および抗がん薬で処理された細胞株のそれと、同時に比較検討した。今回行った、Cluster-filtered network(CFN)アプローチを用いたこれらPTMの同時的な大規模統合解析から、細胞シグナル伝達経路の概要がPTMのクラスター形成パターンによって示されることを明らかにした。われわれはt分布型確率的近傍埋め込み(t-SNE)法を用いてPTMクラスターを特定し、次にそれぞれを既知のタンパク質-タンパク質相互作用(PPI)と統合して、機能的な細胞シグナル伝達経路を解明した。CFNにより、正常な肺上皮組織には存在せず肺がん細胞に認められる、既知およびこれまで未知であった細胞シグナル伝達経路が同定された。複数の種類のPTMで修飾される種々のタンパク質において、それらPTMの発生率は逆相関を示し、分子的に排他的な「OR」ゲートが多数のシグナル伝達イベントを決定することを示唆していた。またわれわれは、アセチルトランスフェラーゼEP300が、多様なPTMが関与する経路のネットワーク中のハブであるらしいことも明らかにした。さらに、これらのデータからHSP90阻害薬であるゲルダナマイシンの作用機序も明らかにした。まとめるとこれらの結果は、アセチル化、メチル化およびリン酸化が介在する細胞シグナル伝達経路が、細胞骨格、膜輸送およびRNA結合タンパク質を介した遺伝子発現の制御を調節していることを示唆している。

Citation: M. Grimes, B. Hall, L. Foltz, T. Levy, K. Rikova, J. Gaiser, W. Cook, E. Smirnova, T. Wheeler, N. R. Clark, A. Lachmann, B. Zhang, P. Hornbeck, A. Ma'ayan, M. Comb, Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. Sci. Signal. 11, eaaq1087 (2018).

英文原文をご覧になりたい方はScience Signaling オリジナルサイトをご覧下さい

英語原文を見る

2018年5月22日号

Editors' Choice

Treg細胞がTreg細胞であるために

Research Article

FAM83ファミリータンパク質のDUF1669ドメインはカゼインキナーゼ1アイソフォームをアンカーする

T細胞受容体のITAMの多重性を調整することによって、効力と選択性をリガンド密度に合わせて制御することができる

Research Resources

タンパク質のリン酸化、アセチル化およびメチル化データセットの統合により、肺がんのシグナル伝達ネットワークの概要を描きだす

最新のResearch Resources記事

2025年04月22日号

健常マウスと肥満マウスの肝臓における飢餓応答性代謝ネットワークの構造的堅牢性と時間的脆弱性

2025年04月15日号

発達時のシナプス刈り込み過程での運動ニューロントランスラトームの動的調節

2025年04月15日号

マイクロRNA miR-124を誘導する薬物が、レチノイン酸耐性神経芽腫細胞の分化を可能にする

2025年03月25日号

内因性Gαi活性の高感度バイオセンサーにより内因性GPCRアゴニスト応答の正確な特性評価が可能に

2025年02月25日号

シークエンシングに基づくスクリーニング法により線虫の非生存性変異体からEGFRシグナル伝達の調節因子を同定